
IJSRSET173193 | Received : 08 Feb-2016 | Accepted : 16 Feb-2017 | January-February-2017 [(3)1: 370-377]

© 2017 IJSRSET | Volume 3 | Issue 1 | Print ISSN: 2395-1990 | Online ISSN : 2394-4099
Themed Section: Engineering and Technology

370

A Novel Approach to Find Reusability using Coupling and

Cohesion Metrics

Annushri Sethi1, Prof. Ritu Tandon2

1
Student, Department of Computer Science, TCET, Indore, Madhya Pradesh, India

2
Professor, TRUBA College of Engineering and Technology, Indore-Rao Bypass Road, Bhopal, Madhya Pradesh,

India

ABSTRACT

The evaluation of the changeability of software program structures is of most important subject for customers of big

structures found in rapid moving domains, which include telecommunications. One way of approaching this

problem is to research the dependency between the changeability of the software program and its layout, with the

aim of locating design properties that can be used as changeability signs. In the realm of object- orientated systems,

experiments have been performed showing that coupling among classes is such an indicator. However,

magnificence brotherly love has now not been quantitatively studied in admire to changeability. In this research, we

set out to research whether brotherly love is correlated with changeability. As concord metrics, LCC and LCOM

have been followed, and for measuring changeability, an alternate impact version changed into used. The facts

gathered on three take a look at systems of commercial size suggest no such correlation. Guide investigation of

training purported to be weakly cohesive showed that the metrics used do now not seize all of the facets of

sophistication cohesion. We finish that cohesion metrics inclusive of LCC and LCOM ought to not be used as

changeability indicators.

Keywords : Cohesion, Coupling, Object Oriented Software, CBO

I. INTRODUCTION

The object-oriented (OO) software improvement era

became to begin with delivered inside the early 1990‟s.

OO era employs classes collectively with gadgets and

their interdependencies to layout and put into effect

structures. OO introduced various underpinning

techniques to software improvement that distinguish OO

from traditional software improvement paradigm. It‟s

miles used to encapsulate a fixed of closely associated

capability in a dependent hierarchy wherein not unusual

functionality is added in one elegance and more

specialized capability of that magnificence is delivered

in other classes.

Item-oriented generation is turning into an increasing

number of famous in industrial software improvement

environments [7]. This technology facilitates within the

improvement of a software product of better high-

quality and lower upkeep prices. Since the traditional

software metrics targets at the system-orientated

software program improvement so it cannot satisfy the

requirement of the object-oriented software, as an end

result a hard and fast of new object oriented software

metrics came into existence. Object orientated Metrics

are the measurement gear adapted to the item oriented

paradigm to assist control and foster best in software

program improvement [7]. OO generation delivered

diverse underpinning procedures like idea of training,

interfaces and so on. To the software program

improvement which distinguish it from traditional

software improvement paradigm.

Item/instance is a run time structure with country and

conduct. Object kingdom is stored in its fields

(variables) and behavior as its methods (capabilities).

Magnificence is static description of object [6].

Inheritance is one of the maximum widely used ideas of

OO paradigm. It‟s far used to encapsulate a set of

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 371

intently associated functionality in a established

hierarchy wherein commonplace functionality is

introduced in one magnificence and more specialized

functionality of that class is brought in other training.

The specialized training inherits the common capability

from their great elegance and uploads their very own

greater functionality. The primary subject of inheritance

is to promote reusability in a machine.

II. METHODS AND MATERIAL

A. Cohesion

Cohesion may be a live that defines the degree of intra-

dependability inside components of a module. The

bigger the cohesion, the higher is that the program style

below figure shows how to determine cohesion module.

Figure 1: Determine Cohesion Modules

B. Coupling

Coupling may be a live that defines the amount of inter-

dependability among modules of a program. It tells at

what level the modules interfere and act with one

another. The lower the coupling, the higher the

program.

Figure 2. Type of Coupling and its importance

C. Literature Review

Literature almost about the software evolution

genuinely introduces the erosive developments inside

the software architecture at the same time as meeting

the changes imposed by using the software program

evolution. On this thesis, we can try to become aware of

such erosive tendencies with the help of class brotherly

love and coupling metrics. Based totally at the literature

assessment, we suppose that both magnificence

cohesion and coupling need to follow deteriorating

developments at the same time as evolution within the

software architecture.

Table 1. Literature Survey

Author Name / Title Journal Strength Weakness

N. Rajkumar1

”Measuring Cohesion

And Coupling In

Object Oriented

System Using Java

Reflection”

ARPN Journal

of Engineering

and Applied

Sciences

This paper proposes a set of new

measures to find coupling and cohesion

in a developmental system using Java

reflection components to assess the

usability. It will predict the fault in an

object-oriented system.

Next version will calculate

coupling and cohesion

metrics for UML

representations

Martin Hitz

 “Measuring Coupling

and Cohesion In

Object-Oriented

Systems “

http://www.isys.

uni-

klu.ac.at/PDF/1

995-0043-

MHBM.pdf

This distinction refers to dynamic

dependencies between objects on one

hand and static dependencies between

implementations.

important aspects of

software quality at run-time

and during the maintenance

phase, respectively.

http://www.isys.uni-klu.ac.at/PDF/1995-0043-MHBM.pdf
http://www.isys.uni-klu.ac.at/PDF/1995-0043-MHBM.pdf
http://www.isys.uni-klu.ac.at/PDF/1995-0043-MHBM.pdf
http://www.isys.uni-klu.ac.at/PDF/1995-0043-MHBM.pdf
http://www.isys.uni-klu.ac.at/PDF/1995-0043-MHBM.pdf

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 372

Aaron B. Binkley

 “A classical view of

object-oriented

cohesion and

coupling”

http://citeseerx.i

st.psu.edu/viewd

oc/download?do

i=10.1.1.99.451

9&rep=rep1&ty

pe=pdf

Evidence is starting to accumulate that

this paradigm is indeed as effective as

has been suggested

Most of the metrics used in

conjunction with the object-

oriented paradigmare, in

fact, classical metrics.

Mr. KailashPatidar

 “Coupling and

Cohesion Measures in

Object Oriented

Programming”

International

Journal of

Advanced

Research in

Computer

Science and

Software

Engineering

A large numbers of metrics have been

built and proposed for measuring

properties of object-oriented software

such as size, inheritance, cohesion and

coupling. The coupling is an important

aspect in the evaluation of reusability

and maintainability of components or

services.

To achieve consistent and

satisfying results, empirical

data obtained from

reallifesoftware engineering

projects

Shweta Sharma

“A review of Coupling

and Cohesion metrics

in Object Oriented

Environment”

International

Journal of

Computer

Science &

Engineering

Technology

(IJCSET)

This paper focuses on two very

significant factors of complexity

measurement of software, which are

coupling and cohesion. An extensive

study of approximately all types of

coupling and cohesion metrics has been

reported in this paper

Very little work has been

done in areas of dynamic

coupling and cohesion

metrics and need further

more investigations

III. RESULTS AND DISCUSSION

Proposed Work

Object oriented design is becoming greater famous in

software development environment and object

orientated design metrics is a vital part of software

program surroundings. Metrics measure certain

residences of software gadget through mapping them to

numbers (or to different symbols) in keeping with well-

described, objective dimension guidelines. Design

Metrics are measurements of the static kingdom of the

project‟s design and extensively utilized for assessing

the size and in a few cases the pleasant and complexity

of software program. Analysis and preservation of

object-oriented (OO) software is costly and difficult.

We take two C# applications one implemented with

inheritance and one with interface. Then we follow

concord Metrics Tight class cohesion (TCC) and

unfastened magnificence cohesion (LCC) at the

applications to calculate the cohesion fee and evaluate

the result. On the premise of result we differentiate

between complexities of inheritance and interface.

Figure 3. Proposed System Architecture

Result Analysis

In this paper we take two programs as an input.We

consider an inheritance program and one with maximum

possible interface program in C#. Calculate number of

joint and disjoint sets. Apply cohesion metrics on the

calculated values. Compare the result.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.99.4519&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.99.4519&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.99.4519&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.99.4519&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.99.4519&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.99.4519&rep=rep1&type=pdf

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 373

Evaluation Parameters

Software functionality very well, and also how can we

use the software functionality in new environment thus

we can find our purpose with few fault and few pace.

And it also increases the ratio since we utilized software

functionality effectively to receive the desire purpose of

the project. Understandability components are

calculated by using of the following metrics and the

descriptions metrics are:

1) Number of Association per class metric

(NASSocC)

The Number of Association per Class metric is defined

as the total number of associations a class has with other

classes or with itself. When the number of associations

is less the coupling between objects are reduced [29].

Brian introduced this metric.

2) Number of Dependencies In metric (NDepIn)

The quantity of Dependencies In metric is defined

because the range of instructions that depend upon a

given elegance [29]. When the dependencies are

reduced the elegance can characteristic extra

independently.

3) Number of Dependencies Out Metric (NDepOut)

This metrics carried out for measuring the dimensions

of this system through thinking about the no of lines in

software. strains of Code (LOC) counts all traces like as

supply line and the number of statements, the number of

comment lines and the quantity of clean traces [39].

Figure 4. Calculate CBO, No of Association, Number

of Dependencies In metric and Number of

Dependencies out metric for Interface Program

Figure 5. Calculate CBO, No of Association, Number

of Dependencies In metric and Number of

Dependencies out metric for Inheritance Program

4) Lines of Code (LOC):

This metrics applied for measuring the size of the

program by considering the no of lines in program.

Lines of Code (LOC) counts all lines like as source line

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 374

and the number of statements, the number of comment

lines and the number of blank lines [28].

Figure 6. Calculate TCC ,LCC and LCOM metric for

Inheritance and Interface Program

Figure 7. Graph show TCC ,LCC and LCOM metric for

Inheritance and Interface Program

5) Comment Percentage (CP):

CP is computed by number of comment line separated

along Line of Code. High evaluate of the CP increases

the maintainability and understandability [39].

 CP = Comment Line / LOC

6) Weighted Method per Class (WMC)

This metrics is applied towards calculating the structure

complexity of the programs. Method complexity is

measured by using Cyclomatic Complexity and WMC

is sum of complexity of the all methods, which is

applied in class.Suppose class is getting the methods

(m1, m2, and m3…mn) and complexity of the methods

are (c1, c2, and c3…cn) then

 WMC = c1+c2+c3+…. +cn;

Cyclomatic Complexity causes foundation of the graph

theory and is computed in one of the 3 directions.

Number of regions in flow graph.Cyclomatic

Complexity determined in flow graph as follow

C (G) = E – N +2;

Where N is the no of the nodes in graph and E is the no

off the edge in the graph.Cyclomatic Complexity

defined in flow graph as follow

C (G) = P+1;

Where „P‟ is number of predicate nodes in the

graph.Statement where we are taking some decision are

called predicate node [39].

7) Depth of Inheritance Tree (DIT):

This metric is applied for measuring the inheritance

complexity for the programs, when programmer usages

the inheritance in his program then this Metric can be

utilized. DIT is the Maximum depth from the root node

of tree to special node. Here class is represented as a

node. Deeper node in the tree accepts more no of the

methods because they inherit and the more classes in the

tree and it make the class more complex [23]. DIT

metric is the length of the maximum path from the node

to the root of the tree. So this metric calculates how far

down a class is declared in the inheritance hierarchy.

The following figure shows the value of DIT for a

simple class hierarchy. DIT represents the complexity of

the behavior of a class, the complexity of design of a

class and potential reuse.

8) Flexibility

It is defined as “the ease with which a system or

component can be modified for use in applications or

environments other than those for which it was

specifically designed” [43]. Flexibility is considered as

a factor affecting the reusability of a component.

Flexibility =1 - [(0.5 X Coupling) + (0.5 X Cohesion)],

Coupling = CBO, Cohesion = LCOM.‟

9) Understandability

It is defined as “the ease with which a system can be

comprehended at both the system-organizational and

detailed statement levels” [43].Understandability is

considered a factor of reusability. Understandability = 1

- [(0.25 X Coupling) + (0.25 X Cohesion) + (0.25 X

Comments) + (0.25 X Size)].

10) Independence

The term “independence” is introduced to reflect the

property of the system concerning the ability of a class

to perform its responsibilities on its own. Independence

is measured by DIT. Other classes inherit the classes

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 375

lower in the hierarchy; these classes depend on their

ancestors to perform their functionalities [43].

Portability = Independence = 1 - adjusted DIT.

Figure 8. Calculate NOC, DIT and LOC metric for

Inheritance and Interface Program

Figure 9. Graph shows NOC, DIT and LOC metric for

Inheritance and Interface Program

Figure 10. Calculate Size, Flexibility, Portability and

Indecency metric for Inheritance and Interface Program

Figure 11. Graph shows Size, Flexibility, Portability

and Indecency metric for Inheritance and Interface

Program

IV. CONCLUSION

The reason of this thesis is to locating the approach and

way to perceive complexity between inheritance and

interface programming via concord metrics in item

orientated packages. Metrics measure certain homes of

software program device via mapping them to numbers

(or to other symbols) according to properly defined,

goal measurement guidelines.

Code Metrics are measurements of the static kingdom of

the project‟s Code and extensively utilized for assessing

the dimensions and in some cases the first-rate and

complexity of software. Analysis and upkeep of object-

orientated (OO) software program is highly priced and

hard. As a consequence, measuring the relationships has

turn out to be a prerequisite to broaden efficient

strategies for analysis and protection. Diverse concord

metrics had been proposed and used in past empirical

investigations; however none of these have taken the

run-time houses of software into account. “To improve

modularity and encapsulation the inter magnificence

brotherly love measures need to be large. By using

greater interfaces compared to inheritance the coupling

measures are reduced. True abstractions normally show

off high cohesion. In evaluation of concord in among

inheritance and interface for the modules, capabilities,

attributes, classes in oops thru concord metrics is carried

out, and interface is calculated as greater reusable code

than inheritance. The extra unbiased a category it's

miles easier to be reused with the aid of any other

software.”

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 376

V. FUTURE WORK

Having delivered a framework for a complete metric for

brotherly love in item-orientated structures on class

levels, we are capable of discover a fundamental

assessment of brotherly love and concluded the

reusability of code by way of differencing among

inheritance and interface in order that the proposed

problem can be resolved theoretically but it is able to be

enforce almost, to be able to make available the

decreased price and complexity for development of in

practical international. The similarly advanced metrics

are given that also can be implement in realistic

behavior in order that a green manner can be recognized

to optimize our approach for improvement of IT

merchandise.

VI. REFERENCES

[1]. V. Krishnapriya, K. Ramar, "Exploring the

Difference Between Object Oriented Class

Inheritance and Interfaces Using Coupling

Measures," ace, pp.207-211, 2010 International

Conference on Advances in Computer

Engineering, 2010

[2]. K.K.Aggarwal, Yogesh Singh, ArvinderKaur,

RuchikaMalhotra. "Empirical Study of Object-

Oriented Metrics",2006

[3]. Martin Hitz, BehzadMontazeri."Measuring

Coupling and Cohesion.In Object-Oriented

Systems" in Angewandte Informatik (1995)

[4]. James M. Bieman andByung-

kyookang."Cohesion and Reuse in Object

Oriented System" Department of Computer

Science, Colorado State University Fort

Collins,Colorado,1995

[5]. Shyam R. Chidamberand Chris F. Kemerer" A

Metrics Suite For object Oriented Design" IEEE

Transactions on software Engineering, Vol. 20,

No. 6, June 1994

[6]. KrishnaprasadThirunarayan." Inheritance in

Programming Languages" Department of

Computer Science and Engineering ,Wright State

University ,Dayton, OH-45435

[7]. ArtiChhikara Maharaja Agrasen College, Delhi,

India. R.S.Chhillar "Applying Object Oriented

Metrics to C#(C Sharp) Programs" Deptt. Of

Computer Sc.And Applications, Rohtak,

India.SujataKhatriDeenDyalUpadhyaya College,

Delhi, India(2011)

[8]. Christopher L. Brooks, Chrislopher G. Buell, "A

Tool for Automatically Gathering Object-

Oriented Metrics", IEEE, 1994

[9]. Friedrich Stiemann, Philip Mayer and Andreas

Meibner, "DecouplingClasses with Inferred

Interfaces", Proceedings of the 2006

ACMSymposium on Applied Computing,

P.No:1404 – 1408.

[10]. Pradeep Kumar Bhatia, Rajbeer Mann, " An

Approach to Measure Software Reusability of OO

Design", Proceedings of 2nd International

Conference on Challenges & Opportunities in

InformationTechnology(COIT-2008),RIMT-

IET,MandiGobissndgarh, March 29, 2008.

[11]. Fried Stiemann, Wolf Siberski and Thomas

Kuhne, " Towards the Systematic Use of

Interfaces in Java Programming", 2nd Int. Conf.

on the Principles and practice of Programming in

Java PPJ 2003, P.No:13-17.

[12]. Girba, T.; Lanza, M.; Ducasse, S. (2005)

Characterizing the Evolution of Class Hierarchies.

Proceedings of the 9th European International

Conference on Software Maintenance and

Reengineering.Manchester, UK, pp.2-11.

[13]. Gilb, T. (1976) Software Metrics. Chartwell-

Bratt, Cambridge, MA.

[14]. Hall, T., Rainer, A., Jagielska, D. (2005) Using

software development progress data to understand

threats to project outcomes. Proceedings of the

11th IEEE International Software Metrics

Symposium (METRICS 2005). Como, Italy, 10

pages.

[15]. Harrison R., Counsell S. and Nithi R.:

"Experimental Assessment of the Effect of

Inheritance on the Maintainability of Object-

Oriented Systems", the Journal of Systems and

Software, vol. 52, pp. 173-179, 2000.

[16]. Henry, S.M., Kafura, D.G. (1981) Software

structure metrics based on information flow. IEEE

Transactions on Software Engineering, 7(5):510-

518.

[17]. Hudli, R., Hoskins, C., Hudli, A., "Software

Metrics for Object-oriented Designs", IEEE,

1994.

[18]. Judith Barnard," A new reusability metric for

object-oriented software Journal software quality

control volume 7 issue 1, 1998.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 377

[19]. Kemerer, C.F. and Slaughter, S. (1999) An

Empirical Approach to Studying Software

Evolution. IEEE Transactions on Software

Engineering, 25(4):493-509.

[20]. Ken Pugh," Interface Oriented Design", Chapter

5, 2005.

[21]. Lee, Y., Liang, B., Wang, F., "Some Complexity

Metrics for Object-Oriented Programs Based on

Information Flow", Proceedings: CompEuro,

March, 1993, pp. 302-310.

[22]. L.C., Briand, Daly, J., Wust, J. (1999b) A unified

framework for coupling measurement in object-

oriented systems. IEEE Transactions on Software

Engineering, 25(1):91-121.

[23]. Lehman, M. M., Programs, Cities, Students,

Limits to Growth?, Inaugural Lecture, in Imperial

College of Science and Technology Inaugural

Lecture Series, Vol. 9, 211-229 (1970, 1974).

Also in Programming Methodology, (D. Gries.

ed.), Springer Verlag, 42-62 (1978). Reprinted in

Lehman and Belady, 1985.

[24]. Lorenz, Mark and Kidd, Jeff, Object-Oriented

Software Metrics, Prentice Hall Publishing, 1994.

[25]. Lorenz, M., Kidd, I. (1994) Object-Oriented

Software Engineering Metrics, Prentics-Hall

Englwood Cliff, NJ.

[26]. Marcela Genero, Mario Piattini and Coral

Calero," A Survey of Metrics for UML Class

Diagrams", in Journal of Object Technology,Vol.

4, No. 9, Nov-Dec 2005.

[27]. McCabe, T. (1976) A software complexity

measure. IEEE Transactions on Software

Engineering, 2(4):308-320.

[28]. Mohsen D. Ghassemi and Ronald R.

Mourant,"Evaluation of Coupling in the Context

of Java Interfaces", Proceedings OOPSLA 2000,

P. No: 47-48, Copyright ACM 2000, 1-58113-

307-3/00/10.

[29]. Mathew Cochran, "Coding Better: Using Classes

Vs Interfaces", January 18th, 2009

